Lecture 4

Mole balance: calculation of membrane reactors and unsteady state in tank reactors.

Analysis of rate data

Mole Balance in terms of Concentration and Molar Flow Rates

- Working in terms of number of moles (N_A, N_B,..) or molar flow rates (F_A, F_B etc) rather than conversion could be more convenient at some instances
- The difference in calculation: we will write mole balance for each and every species in the reactor

Isothermal reaction design algorithm

$$A + 2B \longrightarrow C$$

Mole Balance

Write mole balance on each species⁷

e.g.,
$$\frac{dF_A}{dV} = r_A$$
, $\frac{dF_B}{dV} = r_B$, $\frac{dF_C}{dV} = r_C$

Rate Law

2 Write rate law in terms of concentration

e.g.,
$$-r_A = k_A \left(C_A C_B^2 - \frac{C_C}{K_C} \right)$$

Stoichiometry

3 Relate the rates of reaction of each species to one another

e.g.,
$$r_B = 2r_A$$
, $r_C = -r_A$

Stoichiometry

 (a) Write the concentrations in terms of molar flow rates for isothermal gas-phase reactions

e.g.,
$$C_A = C_{T0} \frac{F_A}{F_T} \frac{P}{P_0}$$
, $C_B = C_{T0} \frac{F_B}{F_T} \frac{P}{P_0}$

with
$$F_T = F_A + F_B + F_C$$

(b) For liquid-phase reactions use concentration, e.g., CA, CB

Pressure Drop

Write the gas-phase pressure drop term in terms of molar flow rates

$$\frac{dy}{dW} = -\frac{\alpha}{2y} \frac{F_T}{F_{T_0}}, \text{ with } y = \frac{P}{P_0}$$

Combine

We an ODE solver or a nonlinear equation solver (e.g., Polymath) to combine Steps ① through ⑤ to solve for, for example, the profiles of molar flow rates, concentration and pressure.

Membrane reactors

- used to increase conversion when the reaction is thermodynamically limited (e.g. with small K)
- or to increase selectivity in when multiple reactions are occurring

$$C_6H_{12} \longrightarrow 3H_2 + C_6H_6$$

inert membrane reactor with catalyst pellet on the feed side (IMRCF)

catalyst membrane reactor (CMR)

Membrane reactors

$$C_6H_{12} \longrightarrow 3H_2 + C_6H_6$$

$$A \rightleftharpoons 3B + C$$

Mole balances:

$$\frac{dF_A}{dV} = r_A$$

$$\frac{dF_C}{dV} = r_C$$

generation

$$F_{B|_{V}} - F_{B|_{V+\Delta V}} - R_{B}\Delta V + r_{B}\Delta V = 0$$

IN by flow

OUT by diffusion

OUT by flow

no accumulation

$$\frac{dF_B}{dV} = r_B - R_B$$

Membrane reactors

$$\frac{dF_B}{dV} = r_B - R_B$$

• Assuming $C_{BS}=0$ and introducing $k_c = k_c'a$ \Longrightarrow $R_B = k_cC_B$

Example: Dehydrogenation reaction

- Typical reactions:
 - dehydrogenation of ethylbenzene to styrene;
 - dehydrogenation of butane to butene
 - dehydrogenation of propane to propene

- Problem: for a reaction of type $A \rightleftharpoons B + C$ where an equilibrium constant Kc=0.05 mol/dm³; temperature 227°C, pure A enters chamber at 8.2 atm and 227°C at a rate of 10 mol/min
 - write differential mole balance for A, B, C
 - plot the molar flow rate as a function of space and time
 - calculate conversion at V=400 dm³.
- Assume that the membrane is permeable for B only, catalyst density is ρ_b=1.5 g/cm³, tube inside diameter 2cm, reaction rate k=0.7 min⁻¹ and transport coefficient k_c=0.2 min⁻¹.

Example

Mole balance:

$$\frac{dF_A}{dV} = r_A \qquad \frac{dF_B}{dV} = r_B - R_B \qquad \frac{dF_C}{dV} = r_C$$

Rate law

$$-r_A = k \left(C_A - \frac{C_B C_C}{K_C} \right)$$

Transport out of the reactor

$$R_B = k_c C_B$$

Stoichiometry

$$C_{A} = C_{T0} \frac{F_{A}}{F_{T}}$$
 $C_{B} = C_{T0} \frac{F_{B}}{F_{T}}$ $C_{C} = C_{T0} \frac{F_{C}}{F_{T}}$ $C_{A0} = C_{T0} = \frac{P_{0}}{RT_{0}} = 0.2 \text{ mol/dm}^{3}$ $C_{C} = C_{T0} \frac{F_{C}}{F_{T}}$

Example

POLYMATH solution

Use of Membrane reactors to enhance selectivity

$$A + B \rightarrow C + D$$

• **B** is fed uniformly through the membrane

$$\frac{dF_B}{dV} = r_B + R_B$$

Unsteady state operation of stirred reactors

- during the start up of a reactor:
- slow addition of component B to a large quantity of A e.g. when reaction is highly exothermic or unwanted side reaction can occur at high concentration of B
- one of the products (**C**) is vaporized and withdrawn continuously.

Startup of CSTR

Conversion doesn't have any meaning in startup so we have to use concentrations

$$F_{A0} - F_A + r_A V = \frac{dN_A}{dt}$$

 For liquid phase with constant overflow

$$v = v_0; V = V_0$$

For the 1st order reactions

$$C_{A0} - C_A + r_A \tau = \tau \frac{dC_A}{dt}, \ \tau = \frac{V_0}{V_0}$$

$$-r_A = kC_A, \quad \frac{dC_A}{dt} + \frac{1+\tau k}{\tau}C_A = \frac{C_{A0}}{\tau}$$

$$C_{A} = \frac{C_{A0}}{1+\tau k} \left\{ 1 - \exp\left[-\left(1+\tau k\right)\frac{t}{\tau}\right] \right\}$$

for small k:

$$t_s = 4.6\tau$$

• e.g. to reach 99% steady state concentration
$$C_{AS} = \frac{C_{A0}}{1+\tau k}, \ t_s = 4.6\frac{\tau}{1+\tau k}$$
 for large k:

$$t_s = 4.6/k$$

Semibatch reactors

semibatch reactors could be used e.g. to improve selectivity

$$A + B \xrightarrow{k_D} D \qquad r_D = kC_A^2 C_B$$

$$A + B \xrightarrow{k_U} U \qquad r_U = kC_A C_B^2$$

• selectivity:
$$S_{D/U} = \frac{r_D}{r_U} = \frac{k_D}{k_U} \frac{C_A}{C_B}$$

Selectivity can be increased by keeping concentration A high and concentration B low

Semibatch equations

For component A: no flow in/out

$$r_{A}V = \frac{dN_{A}}{dt} = \frac{d\left(C_{A}V\right)}{dt} = \frac{VdC_{A}}{dt} + \frac{C_{A}dV}{dt}$$

$$V = V_{0} + v_{0}t$$

$$-v_{0}C_{A} + r_{A}V = \frac{VdC_{A}}{dt} \qquad \Box \qquad \frac{dC_{A}}{dt} = r_{A} - \frac{v_{0}}{V}C_{A}$$

• For component **B**:

$$\frac{dN_B}{dt} = r_B V + F_{B0}$$

$$\frac{VdC_B}{dt} + \frac{C_B dV}{dt} = r_B V + v_0 C_{B0}$$

$$\frac{dC_B}{dt} = r_B + \frac{v_0}{V} (C_{B0} - C_B)$$

Example 4.9

 Production of methyl bromide is carried as an irreversible liquid phase reaction in isothermal semibatch reactor.
 Consider reaction to be elementary.

$$CNBr + CH_3NH_2 \rightarrow CH_3Br + NCNH_2$$

initial volume of fluid $V_0 = 5dm^3$

initial concentration CNBr $C_0(CNBr) = 0.05 \, mol \, / \, dm^3$

flow of CH₃NH₂ solution $v_0 = 0.05 \, dm^3 / s$

concentration CH_3NH_2 $C_0(CH_3NH_2) = 0.025 mol / dm^3$

rate constant $k = 2.2 dm^3 / s \cdot mol$

Solution

• mole balance:
$$\frac{dC_A}{dt} = r_A - \frac{v_0}{V}C_A; \quad \frac{dC_B}{dt} = r_B + \frac{v_0(C_{B0} - C_B)}{V}$$

rate law:

$$r_{A} = -kC_{A}C_{B}$$

combining

$$\begin{split} \frac{dC_{A}}{dt} &= -kC_{A}C_{B} - \frac{v_{0}}{V}C_{A}; & \frac{dC_{B}}{dt} = -kC_{A}C_{B} + \frac{v_{0}(C_{B0} - C_{B})}{V} \\ \frac{dC_{C}}{dt} &= -kC_{A}C_{B} - \frac{v_{0}}{V}C_{C}; & \frac{dC_{D}}{dt} = -kC_{A}C_{B} - \frac{v_{0}}{V}C_{D}; \\ V &= V_{0} + v_{0}t \\ X &= \frac{N_{A0} - N_{A}}{N_{A0}} = \frac{C_{A0}V_{0} - C_{A}V}{C_{A0}V_{0}} \end{split}$$

Polymath calculation

Analysis of rate data

 Main question: How to collect rate data and deduce the reaction rate law?

- The Algorithm:
 - 1. Postulate a rate law
 - 2. Select appropriate reactor type and mole balance
 - 3. Determine the variables and process the experimental data. Apply simplification and create a model
 - 4. Fit model to the data and find the coefficients.
 - 5. Analyze your rate model for "goodness of fit".

Batch reactor data

- For **irreversible** reactions, it is possible to determine reaction order α and ratee constant k by either nonlinear regression or differentiating concentration vs time data
- Differential method is most applicable when:
 - rate is function of one concentration only:

$$A \rightarrow \text{Products}$$

$$-r_A = k_A C_A^{\ \alpha}$$

method of excess is used

$$A + B \rightarrow \text{Products}$$

$$-r_A = k_A C_A^{\alpha} C_b^{\beta}$$

Combing mole balance and rate law:

$$-\frac{dC_A}{dt} = k_A C_A^{\alpha}$$

$$\ln \left[-\frac{dC_A}{dt} \right] = \ln k_A + \alpha \ln C_A$$

$$k_{A} = \frac{-(dC_{A}/dt)}{\left(C_{Ap}\right)^{\alpha}}$$

- Techniques to obtain dC/dt from the data:
 - Graphical
 - Numerical
 - Differentiation of polinomial fit.

- Graphical:
 - $-\frac{\Delta C}{\Delta t}$ plotted vs. t,
 - smooth curve plotted to appoximate the area under the histogramm

- Numerical method:
 - three-point differentiation formulas

- Polynomial fit:
 - fit C_A with a polynomial and differentiate

$$C_A = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

$$\left(\frac{dC_A}{dt}\right) = a_1 + 2a_2 t + 3a_3 t^2 + \dots + na_n t^{n-1}$$

Batch reactor: integral method

- Used when reaction order is known to evaluate the rate constant. The procedure:
 - assume the reaction order
 - integrate the model equation
 - plot the data in appropriate coordinates and fit the data
- Example

 $A \rightarrow \text{Products}$

0th order

$$\frac{dC_A}{dt} = r_A;$$

$$\frac{dC_A}{dt} = -k$$

$$C_A = C_{A0} - kt$$

1st order

$$\frac{dC_A}{dt} = r_A;$$

$$\frac{dC_A}{dt} = -kC_A$$

$$\frac{C_{A0}}{dt} = -kC_A$$

$$\ln \frac{C_{A0}}{C_A} = kt$$

2nd order

$$\frac{dC_A}{dt} = r_A;$$

$$\frac{dC_A}{dt} = -kC_A^2$$

$$\frac{1}{C} - \frac{1}{C} = k$$

Batch reactor: integral method

Figure 5-3 Zero-order reaction.

Figure 5-5 Second-order reaction.

Figure 5-4 First-order reaction.

Figure 5-6 Plot of reciprocal concentration as a function of time.

Batch reactor: non-linear regression

parameters in the non-linear equation (e.g. reaction order and rate constant) are varied to minimize the sum of squares:

$$\sigma^{2} = \frac{s^{2}}{N - K} = \frac{1}{N - K} \sum_{i}^{N} (r_{im} - r_{ic})^{2}$$
 experimental value

number of parameters to be determined

number of runs

steepest gradient descent trajectory to find α and k

Example 5-3

$$(C_6H_5)_3 CCl + CH_3OH \rightarrow (C_6H_5)_3 COCH_3 + HCl$$

$$A + B \rightarrow C + D$$

 The reaction of trityl and methanol is carried out in a solution of benzene and pyridine. Pyridine reacts with HCl and precipitate so the reaction is irreversible. Initial concentration of methanol 0.5 mol/dm³. and trityl 0.05 mol/dm³.
 Determine reaction order with trityl.

$$-\frac{dC_A}{dt} = k'C_A^{\alpha}$$
$$t = \frac{1}{k'} \frac{C_{A0}^{1-\alpha} - C_A^{1-\alpha}}{1-\alpha}$$

Method of initial rates

- Differential method might be problematic if backward reaction rate is significant. In this case method of initial rates should be used instead
- Series of experiments are carried out at different initial concentrations C_{A0} and initial rate -r_{A0} is determined
- rate dependence is plotted to determine the reaction order, e.g.

$$-r_{A0} = kC_{A0}^{\alpha}$$

Method of half-lives

Half-life time of the reaction (time for the concentration of the reactant to fall by half) is determined as function of initial concentration

$$A \rightarrow \text{Products}$$

$$\frac{dC_A}{dt} = -r_A = kC_A^{\alpha}$$

$$t = \frac{1}{k(\alpha - 1)} \left[\frac{1}{C_A^{\alpha - 1}} - \frac{1}{C_{A0}^{\alpha - 1}} \right]$$

$$t = t_{1/2} \text{ at } C_A = \frac{1}{2} C_{A0}$$

$$t_{1/2} = \frac{2^{\alpha - 1} - 1}{k(\alpha - 1)} \frac{1}{C_{A0}^{\alpha - 1}}$$

$$t = t_{1/2}$$
 at $C_A = \frac{1}{2}C_{A0}$

Differential reactor

- consist of a tube with a thin catalyst disk (wafer)
- conversion of the reactants, concentration and temperature should be small
- most commonly used catalytic reactor to obtain experimental data

$$-r_A' = \frac{F_{A0} - F_{Ae}}{\Delta W}$$
$$-r_A' = -r_A'(C_{A0})$$

bed concentration is equal to the inlet

Problems

 P4-26: A large component in the processing train for fuel cell technology is the water gas shift membrane reactor, where H₂ can diffuse out the sides of the membrane while the other gases cannot.

$$CO + H_2O \longrightarrow CO_2 + H_2$$

- Based on the following information plot the concentration and molar flow rates of each of the reacting species down the length of the membrane reactor. Assume: the volumetric feed is 10dm³/min at 10atm; equil molar feed of CO and water vapour with C_{T0}=0.4mol/dm³, equilibrium constant K_e=1.44, reaction rate k=1.37 dm⁶/mol·kg cat·min, mass transfer coefficient for H₂ kc=0.1dm³/mol·kg cat·min.Compare with PFR.
- P5-13